
Chapter 1 Introduction

Software engineers apply methods, techniques, and related tools to understand a

problem and then to elaborate a software solution, gradually, through a series of phases.

Each phase in this process of software development aims to achieve one or more specific

purposes and, in general, the amount of detail addressed increases as the development

process moves nearer to the point where software reaches the customer. A pivotal point,

early in the software development process, occurs with the creation of a software

architecture.

The total investment in a particular software engineering project up through the

definition of a software architecture appears rather modest when viewed as a percentage

of the total software development and maintenance costs. From the point where a

software design exists the investment increases rapidly as software components are

designed, coded, tested, integrated and then tested some more, as documentation is

produced, reviewed, and edited, and as the intended users are trained to exploit the new

software. After delivery to the customer, the investment continues to accumulate over the

life of the new software as errors are discovered and eliminated, and as enhancements are

introduced. The software architecture then provides a technical road map to guide the

bulk of the investment required to engineer a software solution. Mistakes made during

the design of a software architecture and not detected until later in the software

development process tend to be costly. Experience with large software projects indicates

that many defects discovered after release of a software product are due to errors made

during design. Additionally, a significant portion of the cost for a software product

during its entire life-cycle derives from detecting and correcting design flaws. Many of

these design flaws, and their related costs, result from the current state of software design

practice. Software engineering researchers, therefore, explore numerous paths to improve

the productivity of software designers.

One path, considered by a number of software engineering researchers, leads

toward methods for providing automated assistance to help designers create software

architectures. More specifically, given a flow-graph representation of a software system,

researchers propose a number of approaches for automatically generating a software

architecture. Most of the proposed approaches lead to the construction of sequential

designs, represented by structure charts. Instead, the research described in subsequent

chapters of this dissertation proposes, investigates, and evaluates a method for

generating concurrent designs for real-time software, given a flow graph model of system

behavior. The proposed method assumes that a designer expresses system behavior

through data/control flow diagrams, using the notation defined for Real-Time Structured

Analysis, or RTSA. The proposed method encodes knowledge from a behavioral

modeling approach, known as Concurrent Object-Based Real-Time Analysis, or COBRA,

and from a design method, known as COconcurrent Design Approach for Real-Time

2

Systems, or CODARTS. [Gomaa93] The encoded knowledge leads directly to an

automated assistant for designers of concurrent software.

Chapter 2, Approaches to Software Design, provides an overview of some

methods, both those proposed by researchers and those practiced by software engineers,

to address problems associated with software design. The chapter describes a range of

methods for designing sequential software, concurrent and real-time software, and

object-oriented software. In general, these design methods identify a set of products that

embody a software design, along with a series of steps or activities that a human designer

can follow to produce the required products at an acceptable level of quality and on a

repeatable basis. In the best state of software practice today, a software designer uses one

of these methods, as appropriate for the type of design desired. The chapter also

considers some research intended to eliminate the need for design methods by providing

automatic generation of software solutions from a statement of requirements. As

explained in the chapter, a number of difficulties must be overcome before these

automatic programming techniques can be made practical.

Chapter 3, Overview of Research, evaluates some existing approaches to

automating the generation of designs from flow graphs. The chapter goes on to identify

the objectives that a software designer aims to meet and then discusses the methods a

designer uses to achieve those objectives. This discussion leads to three research

problems.

3

1. How can flow-graph specifications be modeled and analyzed using a computer

program to achieve the same semantic interpretation that a human designer gives to such

flow graphs?

2. How can concurrent designs, and the characteristics and constraints of any

intended target environments, be modeled using a computer program to approximate the

semantic view used by a human designer?

3. How can the design processes and decision-making heuristics normally used

by a human designer be modeled using a computer program?

This dissertation proposes a knowledge-based approach to address these research

problems. Chapter 3 provides a description of the proposed approach. Subsequent

chapters provide detailed solutions to each of the research problems.

Chapter 4, A Meta-Model for Specifications, defines and describes a

meta-model for making semantic interpretations from data/control flow diagrams, and for

representing certain specification addenda that cannot be represented directly on a flow

diagram. The dissertation also provides, in Appendix A.1, Axioms for Semantic

Concepts and in Appendix A.2, Rules for Classifying Semantic Concepts, more formal

definitions for the semantic concepts introduced in Chapter 4.

Chapter 5, A Meta-Model for Concurrent Designs, defines and describes a

semantic meta-model for representing concurrent designs. The chapter also illustrates a

graphical notation for rendering concepts from the design meta-model in a diagrammatic

form. In addition, the chapter includes a means for describing salient characteristics, such

4

as operating system services, hardware configurations, and design parameters, that can

represent specific target environments.

Each of the next four chapters identifies, defines, and orders the decision-making

processes needed to model a particular phase in the CODARTS design method. Each

chapter also specifies and explains the rules, based upon design heuristics from the

CODARTS design method, that make specific, design decisions. Chapter 6, Task

Structuring, defines rules for forming concurrent tasks from semantic concepts in the

specification meta-model. Chapter 7, Task Interface Definition, details rules for

mapping semantic concepts from the specification meta-model into appropriate interfaces

among tasks in a concurrent design. Chapter 8, Module Structuring, presents rules for

forming information hiding modules from semantic concepts in the specification

meta-model. Chapter 9, Task and Module Integration, details and discusses rules for

integrating the separate task and module views, as created during task and module

structuring, respectively. Taken together, the decision-making processes and

design-decision rules explained in Chapters 6 through 9 can form the basis for an

automated design generator.

Chapter 10, A Prototype COncurrent Designer’s Assistant, describes a

prototype implemented to investigate and evaluate the approach proposed in Chapter 3.

As implemented, the prototype, named CODA, provides automated assistance in two

main areas: specification analysis and design generation.

5

CODA is used to analyze specifications and to generate designs for four, real-time

applications, as described in Appendix B, Automobile Cruise Control and Monitoring

System Case Study, Appendix C, Robot Controller Case Study, Appendix D, Elevator

Control System Case Study, and Appendix E, Remote Temperature Sensor Case

Study. For each of these case studies, CODA generates, after analyzing an input

data/control flow diagram, one or more concurrent designs.

Chapter 11, Evaluation, uses the results from the case studies to evaluate the

effectiveness of the approach proposed in this dissertation. The chapter contains an

evaluation of the proposed approach both against the research objectives and against

other extant approaches. In addition, the chapter delineates the strengths and weaknesses

of the proposed approach. The chapter also includes a detailed analysis, derived from the

case studies, in order to support the evaluation.

The dissertation closes in Chapter 12, Contributions and Future Research, with

a summary of the contributions made by the research described in the preceding eleven

chapters and in the five appendices. The chapter also describes potential applications of

the research and identifies areas for future, related research.

6

